
LEARN SMART CONTRACT PROGRAMMING IN 1 HOUR

Sichao Yang

Co-Founder and CEO of Nakamoto & Turing Lab

June 17, 2020

What is a smart contract?

9

What is a smart contract?

Executable file Smart contract

Fundamentally, a “smart contract” is a set of coded computer functions.

• May incorporate the elements of a binding contract (e.g., offer, acceptance, and consideration), or may simply execute
certain terms of a contract.

•Allows self-executing computer code to take actions at specified times and/or based on reference to the occurrence or
non-occurrence of an action or event (e.g., delivery of an asset, weather conditions, or change in a reference rate).

Key Attributes of a Smart Contract

Can authenticate counter
party identities,
ownership of assets and
claims of right

Can access or refer to
outside information or
data to trigger action(s)

Can automate execution
processes

Smart contracts use digital
signatures – private
cryptographic keys held by
each party to verify
participation and assent to
agreed terms.

Smart contracts use oracles
– a mutually agreed upon,
network- authenticated
reference data provider
(potentially a third-party);
this is a source of
information to determine
actions and/or contractual
outcomes, for example,
commodity prices, weather
data, interest rates, or an
event occurrence.

Self-execution: A
smart contract will
take actions, e.g.,
disperse payments,
without further action
by the counterparties.

Why blockchain?

The blockchain technology (more specifically, the consensus algorithm)
determines the order of transaction.

Smart contract development cycle

9

Steps to be taken to develop a secure smart contract

1. Understand the use-case of smart contract.
2. Create a basic architecture of smart contracts interaction or flowchart how functions will

interact with each other.
3. Start development using any IDE or development tools like Truffle, remix with proper

documentation of each and every function.
4. Once the development is completed start testing smart contracts on test-net or private

blockchain.(this is called a manual testing).
5. Record all the transaction while testing on test-net, analyze results of all transactions with

actual use case or business logic of smart contract.
6. Unit testing will be the next step in smart contract development life cycle, there are multiple

frameworks for unit and integration testing that can be use to test smart contract. Example :
Truffle framework.

7. Once unit testing is done using truffle framework on ganache, smart contract author should
go for 3rd party Audit of smart contract.

8. Last but not the least, bug bounty programs are also very efficient to secure smart contracts.
Communities like 0x protocol is offering $100,000 in bounty programs.

Understand Use case

Use case of smart contracts should be clear before development is started, developer
should gather all the information of smart contracts like business logic, also all the
3rd party libraries that developer will use while developing a smart contract.

Use cases
• Trading
• Records
• Voting
• Game
• etc.

3rd party libraries
• Consensus Lab
• Openzeppelin

Architecture design

A basic architecture depicts
the business logic of smart
contract. Architecture
design in the initial phase
help developers to follow
the exact path during
development phase.

Development phase

In this phase actual
development is
started, developer can
use any Code editor or
IDE to develop a smart
contract.

Manual Testing

In this phase smart contract
should be tested well on
test-net (Rinkeby/Ropsten),
all the transaction and state
changes should be
recorded to verify that
smart contract’s behavior is
same that intend to be.

Unit Testing

Unit testing can be done using truffle framework, developer should write test cases
for all the functions of smart contract, test cases should reflect correct the business
logic of smart contract.

https://truffleframework.com/

3rd party security audit

All the Smart contracts ready for production should be audited before deploying on
main net, because even though business logic of smart contracts is tested on test-
net several times, smart contract cannot be declared as secured or bug free
contract, smart contract may contain some logical errors that can be identified by
audit.

The cost could be > $100,000.

Bug Bounty

Bug bounty programs are very useful in identifying bugs in smart contract, as your smart
contract will come under the eye of multiple experienced auditors or developers to find
the loopholes in smart contract, even after two successful 3rd party audits, 0x protocol
project have also conduct a bounty program in order to find the potential bug in smart
contract.

Other tools

Code coverage
• code coverage is a special tool that evaluate how efficient your test cases

Up-gradable Smart Contracts
• Tradeoff: decentralization v.s. convenience

Solidity programming

9

Basic Features

Similar to Java, Javascript, Python

• Comments
• Primitive Types
• Strings
• Arrays
• Statements
• Boolean, Conditional, and Arithmetic Expressions
• Loops
• Variables
• Literals
• Methods

Gas costs

• Every theorem block has a gas limit

• The sender of a transaction has to pay the gas cost

• The best practice is to write an optimized code that uses a minimum amount of gas.

• The amount of gas you will use during a transaction depends on

1. The data location of variables
2. The algorithm complexity

Data Locations – Storage

Storage

The storage location is permanent data, which means that this data can be
accessed into all functions within the contract. To make it more simple, you can
think of it as the hard disk data of your computer where all the data gets stored
permanently. Similarly, the storage variable is stored in the state of a smart
contract and is persistent between function calls. Keep in mind that storage
data location is expensive compared to other data locations.

Data Locations – Memory

Memory

The memory location is temporary data and cheaper than the storage location. It
can only be accessible within the function. Usually, Memory data is used to save
temporary variables for calculation during function execution. Once the function
gets executed, its contents are discarded. You can think of it as a RAM of each
individual function.

Data Locations – Calldata

Calldata

Calldata is non-modifiable and non-persistent data location where all the passing
values to the function are stored. Also, Calldata is the default location of parameters
(not return parameters) of external functions.

Data Locations – Stack

Stack

Stack is a non-persistent data maintained by EVM (Ethereum Virtual
Machine). EVM uses stack data location to load the variables during
execution. Stack location has the limitation up to 1024 levels.

Data Locations – Default Rules #1

State variables are
always in storage

You can not explicitly
override the location

Data Locations – Default Rules #2

Function parameters including return parameters are stored in
memory

Data Locations – Default Rules #3

Local variables with a
value type are stored
in the memory.

However, for a
reference type, you
need to specify the
data location explicitly.

Data Locations – Default Rules #4

Function parameters (not including returns parameters) of external function are
stored in the Calldata.

Data Locations – Default Copy Behavior #5

Assignment of one state variable to another state variable creates a new copy

Data Locations – Default Rules #6

Assignment to storage state variable from a memory variable always creates a
new copy.

Data Locations – Default Rules #7

Assignment to a memory variable from state storage variable will create a copy.

Data Locations – Default Rules #8

Assignment from one memory variable to another memory variable will not
create a copy. This is applicable to reference type variables only. Local variable still
creates a new copy.

Global variables

msg.sender
• the address of the sender in the current call

msg.value
• the amount of wei sent with the message

Now
• the current unix timestamp in seconds

Visibility for functions and state variables

Public
• can be called either internally or from messages, default for functions

Private
• can only be called from the contract that it is defined in and not from
derived contracts

Internal
• can be called from the contract it is defined in or in derived contracts

default for state variables

External
• can only be called from other contracts and via transactions
• cannot be called internally

Inheritance

For contracts inheriting from multiple other contracts, only a single
contract is created on the blockchain

The code from the base contracts is copied into the final contract

Use “is” to inherit from another contract

Multiple inheritance is possible

• Use super to call the function in immediate parents in the inheritance
hierarchy

Address Type

• The address type comes in two flavours, which are largely identical:
Ø address: Holds a 20 byte value (size of an Ethereum address).
Ø address payable: Same as address, but with the additional

members transfer and send.

• Operators: <=, <, ==, !=, >= and >

• Member of Addresses
Ø balance
Ø transfer
Ø send
Ø call, delegatecall and staticcall

Smart contract security

9

Smart Contracts: Challenges and Risks

Variables

Vulnerability scenario #1 – all your data is public

Variables

No voters variable L

Vulnerability scenario #1 – all your data is public

Preview votes

in

transactions.

Vulnerability scenario #1 – all your data is public

Functions
• Public functions can be executed by anyone.

• Can anyone execute maliciousFunction2() ?

Functions are public by default!

Vulnerability scenario #1 – public functions

Outsmarting Smart Contracts

Parity Hack worth 30 mln $

https://www.coindesk.com/30-million-ether-reported-stolen-parity-wallet-breach/

The race!

30 mln $ 80 mln $

worth today

90 mln $ 240 mln $

Public function which changes the owner.

Vulnerability scenario #1 – public functions

Lessons learned

Hash of Value

Real Value

Store

Verify

• Set visibility type to all functions.
• Do not keep secret data as plaintext in smart contract.

• Examples:
• Rock Paper Scissors
• Blind Auctions

• Use blind commitments.

Vulnerability scenario #1 – all your data is public

Integer Overflow
• Ethereum Tokens – your

own cryptocurrency on
Ethereum.

• The attack: empty victim’s
wallet.

Vulnerability scenario #2 – smart contract is a program

Integer Overflow
• Balances:

• Victim -> (MAXUINT-9) tokens (e.g. founder of contract).
• Attacker -> 10 tokens.

• Attacker transfers 10 tokens to victim.
• Both have zero tokens.

Vulnerability scenario #2 – smart contract is a program

Insecure libraries

Vulnerability scenario #2 – smart contract is a program

Lessons learned
• Use open source libraries to handle typical errors (e.g. SafeMath for

overflows).

• Write tests for boundary conditions.
• Verify the correctness and test libraries that you plan to use.

Vulnerability scenario #2 – smart contract is a program

Gas Limit
• All transactions are given some gas.
• All operations cost some gas.

• Transaction is rejected if gas limit is
exceeded.

• The idea: to prevent infinite loops.
• The attack: DoS the contract.

Vulnerability scenario #3 – smart contract has limitations

Gas Limit – DoS on auction contract

BID

Auction

0 ETH

1 ETH

1 ETH

BID

2 ETH

2 ETH
RET

UR
N1 ETHBID

3 ETH

BID3 ETH

100

RET
UR
N2 ETH

3 ETH

BID

4 ETH

100 RET
UR
N3 ETH

Further bids are blocked.

WINNER!
50

Vulnerability scenario #3 – smart contract has limitations

Lessons learned
• Learn the limitations of Ethereum (gas, randomness, etc.).
• Learn the way of handling these limitations.

• Write tests for handling limitations.

Vulnerability scenario #3 – smart contract has limitations

Get access to your first smart
contract

9

A number guess games

• N players
• Each player bet 1 ETH and guess one number between 1 and 50
• The smart contract randomly generates a number
• The player whose guess is closest to the number wins all the money
• If there are more than 1 player whose guesses are closest to the number,

they divide the money equally

https://rinkeby.etherscan.io/address/0x1c32e7eeab3948fab5a7f0cc540c611
8424ef571#code

https://rinkeby.etherscan.io/address/0x1c32e7eeab3948fab5a7f0cc540c6118424ef571

