LEARN SMART CONTRACT PROGRAMMING IN 1 HOUR

Sichao Yang
Co-Founder and CEO of Nakamoto & Turing Lab
June 17, 2020

NAKAMOTO
&TURING
LABS

What is a smart contract?

What is a smart contract? I_| TURING

Executable file Smart contract

(4

m
x
m

E-
l

F=9

& «—|BB

Fundamentally, a “smart contract” is a set of coded computer functions.

» May incorporate the elements of a binding contract (e.g., offer, acceptance, and consideration), or may simply execute
certain terms of a contract.

*Allows self-executing computer code to take actions at specified times and/or based on reference to the occurrence or
non-occurrence of an action or event (e.g., delivery of an asset, weather conditions, or change in a reference rate).

Key Attributes of a Smart Contract

NAKAMOTO
&TURING
LABS

Can authenticate counte
party identities,

ownership of assets and
claims of right

Smart contracts use digital
signatures — private
cryptographic keys held by
each party to verify
participation and assent to
agreed terms.

Can access or refer to
outside information or
data to trigger action(s)

Smart contracts use oracles
—a mutually agreed upon,
network- authenticated
reference data provider
(potentially a third-party);
this is a source of
information to determine
actions and/or contractual
outcomes, for example,
commodity prices, weather
data, interest rates, or an
event occurrence.

Can automate execution

processes

Self-execution: A
smart contract will
take actions, e.qg.,
disperse payments,
without further action
by the counterparties.

Why blockchain?

NAKAMOTO
&TURING
LABS

e Double Spending of Bitcoin ﬁ

m ‘ Seller A
el

Buyer I |

Seller B

The blockchain technology (more specifically, the consensus algorithm)

determines the order of transaction.

NAKAMOTO
&TURING
LABS

Smart contract development cycle

Steps to be taken to develop a secure smart contract l\—| LABS

1. Understand the use-case of smart contract.

2. Create a basic architecture of smart contracts interaction or flowchart how functions will
interact with each other.

3. Start development using any IDE or development tools like Truffle, remix with proper
documentation of each and every function.

4. Once the development is completed start testing smart contracts on test-net or private
blockchain.(this is called a manual testing).

5. Record all the transaction while testing on test-net, analyze results of all transactions with
actual use case or business logic of smart contract.

6. Unit testing will be the next step in smart contract development life cycle, there are multiple
frameworks for unit and integration testing that can be use to test smart contract. Example :
Truffle framework.

7. Once unit testing is done using truffle framework on ganache, smart contract author should
go for 3rd party Audit of smart contract.

8. Last but not the least, bug bounty programs are also very efficient to secure smart contracts.
Communities like Ox protocol is offering $100,000 in bounty programs.

Understand Use case N | omne

Use case of smart contracts should be clear before development is started, developer
should gather all the information of smart contracts like business logic, also all the

3rd party libraries that developer will use while developing a smart contract.

Use cases
* Trading
* Records
* \Voting
* Game
* etc.

3rd party libraries
* Consensus Lab
* Openzeppelin

Architecture design

NAKAMOTO
&TURING
LABS

A basic architecture depicts
the business logic of smart
contract. Architecture
design in the initial phase
help developers to follow
the exact path during
development phase.

Q=

5. Distribute

ATFORM OPE#RATOR WALLET

5, Distribute

Investor

Q@

3. commi() /
commitEuwro() s C

WHITEUST ADMIN

4. Issue Neumark

3. burmn()

1. approve(LockedAccount) =

EtherToken

—— 5. withdraw() ————

7. Transter to itself

Locked

4. transfer penalty

(Ether)

Investor

g 2. uniock() —— I l

set whitelistabort —: |

amend agreement

@

PLATFORM rEGAL REP

accept fork

6. appr 0&
lock() 1

setC

& allow

LockedAccount
(Euro)

LOCKED ACCOUNT ADMIN

§— setController(commament)

7. Transter to itself

4

2. app

......

\ 4

Fork Arbiter (EFA)

EuroToken

- 1. 1ssue Euro Token —0.-|

EURT DEPOSIT MANAGER

NAKAMOTO
&TURING

Development phase

@ @ © Home ballot.sol m

@ SOLIDITY COMPILER E
5~ 1 pragma solidity >=0.4.22 <0.6.0;
a8 2~ contract Ballot {
. COMPILER 3
4~ t t Vot
In this P hase actual & 0.4.24+commit.e67f0147 s c * "”ﬁint°w:i"gﬁt;
H 6 bool voted;
d eve I O p m e nt IS "~ Include nightly builds 7 uint8 vote;
h 8 address delegate;
LANGUAGE 9
started, developercan = "™ m Bl o o
. v v 11 uint voteCount;
use any Code editor or .
o2 compiler default a 14 address chairperson;
IDE to develop d SMa rt 15 mapping(address => Voter) voters;
v/ 16 Proposal[] proposals;
v COMPILER CONFIGURATION 17
CO ntra Ct. Aut il 18 /// Create a new ballot with $(_numProposals) different proposals.
‘ uto compile 19~ constructor(uint8 _numProposals) public {
R 20 chairperson = msg.sender;
Enable optimization 21 voter‘s[chair‘per‘son].weigf’1t =1;
Hide warnings ;g proposals.length = _numProposals;
24
s Compile ba||0t,so| 2c 1717 Civin €ria\latan Lha niahi A vindba An Lhie lhalTl AL
u O o listenonnetwork ~ Q Search with transaction hash or address

- Welcome to Remix v0.10.1 -

You can use this terminal for:
e Checking transactions details and start debugging.
e Running JavaScript scripts. The following libraries are accessible:
o web3 version 1.0.0
o ethers.js
o swarmgw
o remix (run remix.help() for more info)

a e Executing common command to interact with the Remix interface (see
list of commands above). Note that these commands can also be

Manual Testing

NAKAMOTO
&TURING
LABS

In this phase smart contract
should be tested well on
test-net (Rinkeby/Ropsten),
all the transaction and state
changes should be
recorded to verify that
smart contract’s behavior is
same that intend to be.

Transaction hashes

Network : rinkeby

Contract creation : 0x8f5502fb08f74 cef7f2ecbd37afa36317bc3e39865fe229bf5a2f37d361208ec
Transfer tokens : 0x6ab77473cf529db7f209a46c53f81974f75192064cf00426 5fbdef61dd2a7716
Approve : 0xf5f5729791b87e48667da71d0c7f0b 1f8d90ba23afc07376e50d5c47 1€026b7 3

Send ether to token contract (Should fail):
0xd439077b3707154b39a64bdd62f7a0973e5590d9ec837 12f2bf696d663 1500e0

transferFrom :0x1914e66e3ced288ecb7c9bed4 12b6339d344f5588 1abf7abb66529a30ec43059
transferOwnership : 0xd374fc752aeaa0c0fd4c3989 1cbfbe 597d7c5e1c89f608a4738f2787bba2a863
acceptOwnership: Ox4ec5bdbe76d4280cad c66be5a0562e789d2d0bcb6668bfbff224 5a06bc5bca30
Burn tokens : 0x99375a0f74d87 2ef83c282b98b7294aa414174acef96deb0586c3b7d19fchb092

Tokens(Sample tokens) transfer to MM token contract
0x7d69373b29dd628 1ff987 286dcdca 17206 3ab915f2d402fa5d9b615a1afa3ebd

transferAnyERC20Tokens
0xc54934d8ef31a8f56868ed824 39df6c4c512c3365c8623620afc636df239a873

Unit Testmg I\“I ?ff‘mgm

Unit testing can be done using truffle framework, developer should write test cases
for all the functions of smart contract, test cases should reflect correct the business
logic of smart contract.

https://truffleframework.com/

31 party security audit N | omne

All the Smart contracts ready for production should be audited before deploying on
main net, because even though business logic of smart contracts is tested on test-
net several times, smart contract cannot be declared as secured or bug free

contract, smart contract may contain some logical errors that can be identified by
audit.

The cost could be > $100,000.

</{ @CER‘TIK

n Quantstamp

QuillAudits

Bug Bounty N e

Bug bounty programs are very useful in identifying bugs in smart contract, as your smart
contract will come under the eye of multiple experienced auditors or developers to find
the loopholes in smart contract, even after two successful 3rd party audits, Ox protocol
project have also conduct a bounty program in order to find the potential bug in smart

contract.

Other tools

N

NAKAMOTO
&TURING
LABS

Code coverage
code coverage is a special tool that evaluate how efficient your test cases

[]

File Statements v
ERC20.s0l] 100%
ERC20Basic.sul | 10C%
NoOwner.scl | 100%
ACATcken.sol I | 08.65%
SafeMath.sol I 91.67%
ACATckensalz2.s0l I | 91.36%

Up-gradable Smart Contracts

Tradeoff: decentralization v.s.

Rranches
o/o 100%
oo 100%
o0 100%
73/71 59.62%
11/12 S50%
222/243 53.16%
convenience

0/0

0/0

0/0

31/52

4/8

101/190

Finctions

100%

100%

100%

95.7/5%

100%

93.85%

00

0o

00

21/22

44

51/65

lines

100%

100%

100%

97.01%

91.67%

90.43%

0/0

0/0

0/0

65/67

11/12

208/230

NAKAMOTO
&TURING
LABS

Solidity programming

Basic Features I\‘I

Similar to Java, Javascript, Python

* Comments

* Primitive Types

* Strings

* Arrays

* Statements

* Boolean, Conditional, and Arithmetic Expressions

* Loops
 Variables
e Literals

e Methods

Gas costs I\—I

« Every theorem block has a gas limit

» The sender of a transaction has to pay the gas cost
* The best practice is to write an optimized code that uses a minimum amount of gas.
« The amount of gas you will use during a transaction depends on

1. The data location of variables
2. The algorithm complexity

Data Locations — Storage l_| TURING

Storage

The storage location is permanent data, which means that this data can be
accessed into all functions within the contract. To make it more simple, you can
think of it as the hard disk data of your computer where all the data gets stored

permanently. Similarly, the storage variable is stored in the state of a smart
contract and is persistent between function calls. Keep in mind that storage
data location is expensive compared to other data locations.

Data Locations — Memory N\ | Fremme

Memory

The memory location is temporary data and cheaper than the storage location. It
can only be accessible within the function. Usually, Memory data is used to save
temporary variables for calculation during function execution. Once the function
gets executed, its contents are discarded. You can think of it as a RAM of each
individual function.

Data Locations — Calldata I_| STURING

Calldata

Calldata is non-modifiable and non-persistent data location where all the passing

values to the function are stored. Also, Calldata is the default location of parameters
(not return parameters) of external functions.

Data Locations — Stack N\ | Fremme

Stack

Stack is a non-persistent data maintained by EVM (Ethereum Virtual

Machine). EVM uses stack data location to load the variables during
execution. Stack location has the limitation up to 1024 levels.

Data Locations — Default Rules #1

NAKAMOTO
&TURING
LABS

State variables are
always in storage

You can not explicitly
override the location

01.
02.
03.
04.
05.
06.
07.
08.

01.
02.
03.
04.
05.
06.
07.

pragma solidity 70.5.0;
contract Datalocation {
//storage

uint stateVariable;
uint[] stateArray;

pragma solidity "0.5.0;

contract Datalocation {

uint storage stateVariable; // error

uint[] memory stateArray;

// error

Data Locations — Default Rules #2 I\,_| ST

Function parameters including return parameters are stored in
memory

pragma solidity *0.5.8;
contract Location {

uint stateVariable;
uint[] stateArray;

function calculationjuint numl, uint num2)|public pure returns quint result){
return numl + numZ;

}

Data Locations — Default Rules #3

N

NAKAMOTO
&TURING
LABS

Local variables with a
value type are stored
in the memory.

However, for a

reference type, you
need to specify the

data location explicitly.

01.
02.
03.
04.
03,
06.
07.
08.
09.
10.
11.
12
13
14.
LS.
16.
17.
18.
1LY
200
24L
22,
23.
24.
25.

pragma solidity ~0.5.0;
contract Locations {
/* these all are state variables */

//stored in the storage
bool flag;

uint number;

address account;

function doSomething() public {
/* these all are local variables */

//value types

//so they are stored in the memory
bool flag2;

uint number?2;

address account2;

//reference type
uint[] memory localArray;

Data Locations — Default Rules #4 l\—| ST

Function parameters (not including returns parameters) of external function are
stored in the Calldata.

Data Locations — Default Copy Behavior #5 I\—| ETURING

Assignment of one state variable to another state variable creates a new copy

01. pragma solidity "~0.5.0;

02.

03. contract Locations {

04.

05. uint public stateVarl = 10;

06. uint stateVar2 = 20;

07.

08. function doSomething() public returns (uint) {
09.

10. stateVarl = stateVar2;

11. statevVar2 = 30;

12.

13. return stateVarl; //returns 20
14. }

15. }

Data Locations — Default Rules #6 I\—| ST

Assignment to storage state variable from a memory variable always creates a
new copy.

01. pragma solidity * 0.5.0;

02.

03. contract Locations {

04.

05. uint stateVar = 10; //storage

06.

07. function doSomething () public returns (uint) {
08.

09. uint localVar = 20; //memory
10. stateVar = localVar;

11. localVar = 40;

12.

13. return stateVar; //returns 20
14. }

15. }

Data Locations — Default Rules #7 I\—| ST

Assignment to a memory variable from state storage variable will create a copy.

01. pragma solidity * 0.5.0;

02.

03. contract Locations {

04.

05. uint statevar = 10; //storage

06.

07. function doSomething () public returns (uint) {
08.

09. uint localVar = 20; //memory
10.

11. localVar = stateVar;

12. stateVar = 40;

13.

14. return localVar; //returns 10
15. }

16. }

Data Locations — Default Rules #8 I\—| ST

Assignment from one memory variable to another memory variable will not
create a copy. This is applicable to reference type variables only. Local variable still
creates a new copy.

01. pragma solidity ~ 0.5.0;

02.

03. contract Locations {

04.

05. function doSomething ()

06. public pure returns(uint[] memory, uint[] memory) {
07.

08. uint[] memory localMemoryArrayl = new uint[] (3);
09. localMemoryArrayl [0] = 4;

10. localMemoryArrayl[1l] = 5;

11. localMemoryArrayl [2] = 6;

12.

13. uint[] memory localMemoryArray2 = localMemoryArrayl;
14. localMemoryArrayl[0] = 10;

15.

16. return (localMemoryArrayl, localMemoryArray?2);

17. //returns 10,4,6 | 10,4,6

18. }

1LY, }

Global variables I\‘I

msg.sender
« the address of the sender in the current call

msg.value
« the amount of wei sent with the message

Now
* the current unix timestamp in seconds

Visibility for functions and state variables l_| TURING

Public
e can be called either internally or from messages, default for functions

Private

e can only be called from the contract that it is defined in and not from
derived contracts

Internal

e can be called from the contract it is defined in or in derived contracts
default for state variables

External

e can only be called from other contracts and via transactions
e cannot be called internally

Inheritance I\—I

For contracts inheriting from multiple other contracts, only a single
contract is created on the blockchain

The code from the base contracts is copied into the final contract

&TURING

Use “is” to inherit from another contract l\—|

pragma solidity

owned {
owned() { owner
owner;

r
1

owner) selfdestruct(owner);

Multiple inheritance is possible l\—| LABS

ortal owned {

kill() {

owner) selfdestruct(owner);

Base2 {

« Use super to call the function in immediate parents in the inheritance
hierarchy

Address Type l_|

* The address type comes in two flavours, which are largely identical:
» address: Holds a 20 byte value (size of an Ethereum address).

» address payable: Same as address, but with the additional
members transfer and send.

e Operators: <=, <, ==, I=, >=and >

e Member of Addresses
> balance
> transfer

» send
» call, delegatecall and staticcall

NAKAMOTO
&TURING
LABS

Smart contract security

Smart Contracts: Challenges and Risks N Fremme™

Although Smart Smart Contracts
Contracts could: (could also:

Enhance market activity and efficiency
Verify customer and counterparty

Unlawfully circumvent rules and protections.

identity Diminish transparency and accountability.
Smart |
Facilitate trade execution and contract Contracts Impair market integrity.
fulfillment m

Introduce risk, including operational,

Ensure accurate books and recordkeeping technical and cybersecurity.

Complete prompt regulatory reporting Be subject to fraud and manipulation

Vulnerability scenario #1 — all your data is public I\,_| srune

LABS

B Contract Address 0x81C4b9122B096116696EE41a6aA955039C045(15

Variables

Contract Overview Misc

Balance: 0 Ether Contract Creatc

Transactions: 2 txns

Transactions Code © Read Contract Events

" name bytes32, voteCount wini256

2.> winningProposal = 0 winf256

- - 3.>voters 0x4ea30548c7b1ee401d4183aea102b49a190295f8 | Query
mapping(address => Voter) public voters;

_ - B

[voters method Response |
»voted hHool: true
»vote wniZ56: 0

4.>winnerName = 0x5472756d7000 bHyfes32

Vulnerability scenario #1 — all your data is public I\,_| srune

LABS

. Contract Address 0xA96259D1549eaf0ES318666a478df4522E856233
Contract Overview Misc
Balance: 0 Ether Contract Creato
Transactions: 1txn

Transactions Code © [EEGRegic-=d8 Events

& Read Contract Information

1.>proposals <input> (uint256) ‘F" ak)\e @
" name bN@oW\tﬁ!;

2.> winningProposal = 0 vinf256

mapping(address => Voter) private voters;

3.>winnerName = 0x5472756d7000 bHyfes32

Vulnerability scenario #1 — all your data is public

NAKAMOTO
&TURING
LABS

N

TxHash:
TxReceipt Status:
Block Height:
TimeStamp:
From:

To:

Value:

Gas Limit:

Gas Used By Txn:

Gas Price:

Actual Tx Cost/Fee:

Nonce

Input Data:

24

Function: vote(uint256 proposal)

MethodID: ©x0121b93f

([e:

slelelalelalalelalolalalolala el e lala e lalalalsle lels el ls el lo ol e falo fe el o lela e lala e s lo fela o e o le o o fo o Lo [1o 1)

/

N

67790

0.000000001 Ether

Preview votes

0.00006779 Ether .

83

.
Function: vote(uint256 proposal)
MethodID: @x0121b93f

[e]:

transactions.

Vulnerability scenario #1 — public functions I_| thgs

Functions
pragee selidity o o,

. . .
osstvest Svustatunstbens ¢ Public functions can be executed by anyone.

St el s s s+ Can anyone execute maliciousFunction?2() ?
)

function maliciousFunction2() {

} Functions are public by default!

&TURING

Vulnerability scenario #1 — public functions I\._| M

Parity Hack worth 30 mIin S

Public function which changes the owner.

$30 Million: Ether Reported Stc

to Parity Wallet Breach

https://www.coindesk.com/30-million-ether-reported-stolen-p

function initwallet(address[] _owners, uint _required, uint _daylimit) {
.‘.'w'....' .h.n.n'

A RARE "~ - redwired

&TURING

Vulnerability scenario #1 — all your data is public l\—|

Lessons learned

Set visibility type to all functions.

Do not keep secret data as plaintext in smart contract.

 Examples:
* Rock Paper Scissors
e Blind Auctions Hash of Value Store
* Use blind commitments. E

Real Value Verify

&TURING

Vulnerability scenario #2 — smart contract is a program I\—|

Integer Overflow

* Ethereum Tokens—your "%

own cryptocurrency on Sapping (adiress <> wint i) pblic bolancend,
Ethereum' function transfer(address to, uint256 _value) {
< ee) require(balanceOf[msg.sender] >= _value);
* The attack: empty victim’s balanceof[msg.sender] -= _value;

balanceOof[_to] += _value;

wallet.)

&TURING

Vulnerability scenario #2 — smart contract is a program I\—|

Integer Overflow

* Balances:
* Victim -> (MAXUINT-9) tokens (e.g. founder of contract).

e Attacker -> 10 tokens.

e Attacker transfers 10 tokens to victim.
(etract Yo |

* Both have zero tokens. awpolag (sdiress «» wiat2ee) sublte Solances?;

function tramfer{adiress to, winti% walwe) (
reguire(baloncedt (mng sender | - valee),
belanedf [mng sender | valew,

balanceof[_to] += _value;

&TURING

Vulnerability scenario #2 — smart contract is a program I\.—|

Insecure libraries

1 comstracter - Just pess en Whe mmer wvey to e mitienss ¢ Lthereum’s
/7 e Lieit te deylieit .
fonstion Subumtionfativend] e, ciet yopired, ctet Shintt) Parity

‘

' rowired); Hacked, Half
1t t1tn s oot e ccmrtitnn 30 3. a Million ETH
function kill(address to) onlymanyowners(sha3(msg.data)) external {

suicide(_to); Frozen

}

@ November 7, 2017 1:58 pm

Vulnerability scenario #2 — smart contract is a program l\—| thgs

Lessons learned
* Use open source libraries to handle typical errors (e.g. SafeMath for
overflows).
* Write tests for boundary conditions.
* Verify the correctness and test libraries that you plan to use.

&TURING

Vulnerability scenario #3 — smart contract has limitations I\—|

Gas Limit

e All transactions are given some gas.

* All operations cost some gas.

* Transaction is rejected if gas limit is
exceeded.

* The idea: to prevent infinite loops.
* The attack: DoS the contract.

Vulnerability scenario #3 — smart contract has limitations I\.—| thgs

Gas Limit — DoS on auction contract

Further bids are blocked.

Q Auction

A%

@ ETH

&TURING

Vulnerability scenario #3 — smart contract has limitations l\—|

Lessons learned

e Learn the limitations of Ethereum (gas, randomness, etc.).
e Learn the way of handling these limitations.

* Write tests for handling limitations.

NAKAMOTO
&TURING
LABS

Get access to your first smart
contract

A number guess games N\ | Fremme

* N players

e Each player bet 1 ETH and guess one number between 1 and 50

* The smart contract randomly generates a number

* The player whose guess is closest to the number wins all the money

* If there are more than 1 player whose guesses are closest to the number,

they divide the money equally

https://rinkeby.etherscan.io/address/0Ox1c32e7eeab3948fab5a7f0cc540c611
8424ef571#code

https://rinkeby.etherscan.io/address/0x1c32e7eeab3948fab5a7f0cc540c6118424ef571

